
CNT 4714: Servlets – Part 1 Page 1 Dr. Mark Llewellyn ©

CNT 4714: Enterprise Computing

Summer 2014

Introduction To Servlet Technology – Part 1

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 4078-823-2790

http://www.cs.ucf.edu/courses/cnt4714/sum2014

CNT 4714: Servlets – Part 1 Page 2 Dr. Mark Llewellyn ©

Client-Server Relationship Revisited
• In a client-server relationship, the client requests that some action be

performed and the server performs the action and responds to the

client.

• This request-response model of communication is the foundation for

the highest-level view of networking in Java – servlets and

JavaServer Pages (JSP).

• A servlet extends the functionality of a server, such as a Web server

that serves Web pages to a user’s browser using the HTTP protocol.

A servlet can almost be thought of as an applet that runs on the server

side--without a face. Java servlets make many Web applications

possible.

• Packages javax.servlet and javax.servlet.http provide the

classes and interfaces to define servlets. Packages javax.servlet.jsp

and javax.servlet.jsp.tagext provide the classes and interfaces

that extend the servlet capabilities for JSP.

CNT 4714: Servlets – Part 1 Page 3 Dr. Mark Llewellyn ©

Client-Server Relationship Revisited (cont.)

• Using special syntax, JSP allows Web-page implementers to

create pages that encapsulate Java functionality and even to

write scriplets of actual Java code directly into the page.

• A common implementation of the request-response model is

between Web browsers and Web servers. When a user selects a

Web site to browse through the browser (the client application),

a request is sent to the appropriate Web server (the server

application). The server normally responds to the client by

sending the appropriate HTML Web page.

• Servlets are effective for developing Web-based solutions that

help provide secure access to a Web site, interact with

databases on behalf of a client, dynamically generate custom

HTML documents to be displayed by browsers and maintain

unique session information for each client.

CNT 4714: Servlets – Part 1 Page 4 Dr. Mark Llewellyn ©

Static and Dynamic Web Content

• Consider how a web page is displayed by a browser.

– Typically, the web page is created using HTML and stored as a

file on the web server. A user enters a URL for the file from a

web browser. The browser contacts the web server and

requests the file. The server finds the file and returns it to the

browser. The browser then displays the file for the user.

• Static information is stored in HTML files. The HTML

files can be updated, but at any given time, every request

for the same file returns exactly the same content. The

contents do not change regardless of who requested the

file.

CNT 4714: Servlets – Part 1 Page 5 Dr. Mark Llewellyn ©

Static and Dynamic Web Content (cont.)

• Not all information, however, is static in nature. Often

HTML pages need to generate information dynamically.

• Dynamic web pages are generated by web server. The

web server will execute certain programs to process user

requests from browsers in order to produce a customized

response.

• The Common Gateway Interface (CGI) was proposed to

generate dynamic web content. The interface provides a

standard framework for web servers to interact with

external program known as CGI programs.

CNT 4714: Servlets – Part 1 Page 6 Dr. Mark Llewellyn ©

CGI Programming
• When a web server receives a request from a browser it passes

it to the CGI program. The CGI program processes the request

and generates a response at runtime. CGI programs can be

written in any language, but Perl is the most popular choice.

Web Browser

Web Server Host

Host Machine File System

Execute CGI

Program

Web

Server

get CGI code

generate response
spawn CGI process

send a request URL

HTML page returned

Generating Dynamic Content

CNT 4714: Servlets – Part 1 Page 7 Dr. Mark Llewellyn ©

The GET and POST Methods

• The two most common HTTP requests, also known as

methods, are GET and POST.

• The web browser issues a request using a URL or an HTML

form to trigger the web server to execute a CGI program.

(We’ll deal with forms later.) When issuing a CGI request

directly from a URL, the GET method is used.

• This form of a URL is known as a query string. The URL

query string consists of the location of the CGI program,

parameters, and their values.

• When issuing a request from an HTML form, either a GET or

POST method can be used.

CNT 4714: Servlets – Part 1 Page 8 Dr. Mark Llewellyn ©

The GET and POST Methods (cont.)

• The form explicitly specifies which of the two is used.

• If the GET method is used, the data in the form are appended

to the request string as if they were submitted using a URL.

• If the POST method is used, the data in the form are

packaged as part of the request file. The server program

obtains the data by reading the file.

The GET and POST methods both send requests to the web server. The POST

method always triggers the execution of the corresponding CGI program. The GET

method may not cause the CGI program to be executed if the previous same request is

cached in the web browser. Browsers often cache web pages so that the same request

can be quickly responded to without contacting the web server. The browser checks

the request sent through the GET method as a URL query string. If the results for the

exact same URL are cached on a disk, then the previous web page for the URL may be

displayed. To ensure that a new web page is always displayed, use the POST method.

CNT 4714: Servlets – Part 1 Page 9 Dr. Mark Llewellyn ©

From CGI To Java Servlets

• CGI provides a relatively simple approach for creating

dynamic web applications that accept a user request, process

it on the server side, and return responses to the user’s

browser.

• However, CGI is extremely slow when handling a large

number of requests simultaneously, because the web server

must spawn a process for executing each CGI program.

• Java servlets were developed to remedy the performance

problem of CGI programs. Java servlets are basically Java

programs that behave like CGI programs.

CNT 4714: Servlets – Part 1 Page 10 Dr. Mark Llewellyn ©

Java Servlets

• Java servlets are executed upon request from a web browser.

• All servlets execute inside a servlet container, also referred to

as a servlet server or a servlet engine.

• A servlet container is a single process that runs a JVM (Java

Virtual Machine). The JVM creates a thread to handle each

servlet (recall that threads have considerably less overhead

than full-blown processes). All the threads share the same

memory allocated to the JVM. Since the JVM persists

beyond the lifecycle of a single servlet execution, servlets

can share objects already created in the JVM.

– For example, if multiple servlets access the same database, they can

share the connection object.

CNT 4714: Servlets – Part 1 Page 11 Dr. Mark Llewellyn ©

Thin Clients

• Servlets are the ideal solution for database-intensive

applications that communicate with thin clients.

– Thin clients are applications that provide presentation but

do not process data, thus requiring few computing

resources.

• The server is responsible for database access. Clients

connect to the server using standard protocols available

on most client platforms. The presentation-logic code

for generating dynamic content can be written once and

reside on the server for access by clients, to allow

programmers to create efficient thin clients.

CNT 4714: Servlets – Part 1 Page 12 Dr. Mark Llewellyn ©

Apache Tomcat Server

• Sun Microsystems, through the Java Community Process is
responsible for the development of the servlet and JSP specifications.

• To run Java servlets, you need a servlet container. While many servlet
containers are available, the reference implementation of both these
standards developed by the Apache Software Foundation
(www.apache.org) is known as Tomcat.

• Tomcat was developed as part of the Jakarta Project. The Jakarta
Project contains many subprojects designed to help commercial
server-side developers.

• Tomcat became a top-level project at Apache in early October 2005.

• Tomcat is the official reference implementation of the JSP and servlet
standards. Tomcat can be used standalone as a web server or plugged
into a web server like Apache, IIS (Internet Information Services),
etc.. The current stable implementation is Tomcat 7.0.54 (as of May
22, 2014).

http://www.apache.org/

CNT 4714: Servlets – Part 1 Page 13 Dr. Mark Llewellyn ©

Servlet Overview and Architecture

• The Internet offers many protocols. The HTTP (Hypertext

Transfer Protocol) that forms the basis of the WWW uses URLs

(Uniform Resource Locators) to locate resources on the

Internet.

• URLs can represent files or directories and can represent

complex tasks such as database lookups and Internet searches.

• JSP technology, basically an extension of servlet technology,

simplifies the process of creating pages by separating

presentation from content.

• Typically, JSPs are used when most of the content sent to the

client is static text and markup, and only a small portion of the

content is generated dynamically with Java code.

CNT 4714: Servlets – Part 1 Page 14 Dr. Mark Llewellyn ©

Servlet Overview and Architecture (cont.)

• Servlets are more commonly used when a small portion of the

content sent to the client is static text or markup. In fact, some

servlets do not produce content. Rather, they perform a task on

behalf of the client, then invoke other servlets or JSPs to provide a

response.

• Note that in most cases servlet and JSP technologies are

interchangeable.

• The server that executes a servlet is referred to as the servlet

container or servlet engine.

• Servlets and JSP have become so popular that they are now

supported directly or with third-party plug-ins by most major Web

servers and application servers (servers that execute applications to

generate dynamic Web pages in response to requests).

CNT 4714: Servlets – Part 1 Page 15 Dr. Mark Llewellyn ©

Servlet Overview and Architecture (cont.)

• We’ll look at servlets that implement the request-response model

between clients and servers using the HTTP protocol. This

architecture is shown in the diagram below.

Web

Browser

Web

Server
Servlet Servlet

Servlet Container

Database

HTTP request HTTP request

HTTP response
HTTP response

CNT 4714: Servlets – Part 1 Page 16 Dr. Mark Llewellyn ©

Servlet Overview and Architecture (cont.)

Explanation of the architecture diagram on previous page

• A client application sends an HTTP request to the server.

• The servlet container receives the request and directs it to be

processed by the appropriate servlet.

• The servlet does its processing, which may include

interacting with a database or other server-side components,

such as other servlets or JSPs.

• The servlet returns its results to the client – normally in the

form of an HTML, XHTML, or XML document to display in

a browser.

CNT 4714: Servlets – Part 1 Page 17 Dr. Mark Llewellyn ©

Interface Servlet and the Servlet Lifecycle

• Architecturally speaking, all servlets must implement the
Servlet interface of package javax.servlet.

• The methods of interface Servlet are invoked by the
servlet container. This interface declares five methods
which deal with the execution of a servlet. These methods
are shown on the next page. For the details see:
www.java.sun.com/j2ee/1.4/docs/api/javax/servlet/Servlet.html

• A servlet’s life cycle begins when the servlet container loads
it into memory – normally, in response to the first request for
the servlet.

• Before the servlet can handle that request, the container
invokes the servlet’s init method.

http://www.java.sun.com/j2ee/1.4/docs/api/javax/servlet/Servlet.html

CNT 4714: Servlets – Part 1 Page 18 Dr. Mark Llewellyn ©

Methods of the Servlet Interface

Method Description

destroy()
Called by the servlet container to indicate to a servlet that the

servlet is being taken out of service.

getServletConfig()
Returns a ServletConfig object, which contains initialization

and startup parameters for this servlet.

getServletInfo()
Returns information about the servlet, such as author, version,

and copyright.

init()
Called by the servlet container to indicate to a servlet that the

servlet is being placed into service.

service()
Called by the servlet container to allow the servlet to respond

to a request.

CNT 4714: Servlets – Part 1 Page 19 Dr. Mark Llewellyn ©

The Servlet Lifecycle
• After init completes execution, the servlet can respond to its

first request.

• All requests are handled by the a servlet’s service method,

which receives the request, processes it and sends a response to

the client.

• During the servlet’s lifecycle, the method service is invoked

once per request. Each new request is typically handled in a

separate thread of execution (managed by the servlet container)
in which method service executes.

• When the servlet container terminates the servlet (whenever the

servlet needs more memory or when it is shutdown), the
servlet’s destroy method is invoked to release servlet

resources.

CNT 4714: Servlets – Part 1 Page 20 Dr. Mark Llewellyn ©

Setting Up Tomcat
• Tomcat is a fully functional implementation of servlets and

JSPs. It includes a Web server, so it can be used as a

standalone test container for servlets and JSPs.

• The current stable version is 7.0.54 available from

www.apache.org. This version was declared stable on May

22, 2014.

1. Select the Tomcat page from the menu on the left-hand side
of the screen (its way down the page). As shown on page 21.

2. Once in the Tomcat project, select Download Tomcat 7.0.54
from the left-hand side of the screen as shown on page 22.

3. Once in the download binaries screen, select the option of
your choice. This is shown on page 24.

http://www.apache.org/

CNT 4714: Servlets – Part 1 Page 21 Dr. Mark Llewellyn ©

Select the Tomcat

project

CNT 4714: Servlets – Part 1 Page 22 Dr. Mark Llewellyn ©

CNT 4714: Servlets – Part 1 Page 23 Dr. Mark Llewellyn ©

Click on Tomcat 5.x

CNT 4714: Servlets – Part 1 Page 24 Dr. Mark Llewellyn ©

Select the download version

you need. Select Windows

Service Installer for a

Windows installer version.

CNT 4714: Servlets – Part 1 Page 25 Dr. Mark Llewellyn ©

CNT 4714: Servlets – Part 1 Page 26 Dr. Mark Llewellyn ©

CNT 4714: Servlets – Part 1 Page 27 Dr. Mark Llewellyn ©

The host manager will not be

selected in the default setting.

Be sure to check its box if you

will run multiple Tomcats. You

can decide whether or not to

include the examples.

CNT 4714: Servlets – Part 1 Page 28 Dr. Mark Llewellyn ©

Set up a Tomcat Administrator

login so that you can manage

your Tomcat server more easily.

This will be very important when

you are deploying your servlets.

Port 8080 is the default Tomcat

connector port. Unless you

have a conflict with this port, use

this for Tomcat. When we setup

Apache later, we’ll put in on a

different connector port so that

both servers can be running

simultaneously.

CNT 4714: Servlets – Part 1 Page 29 Dr. Mark Llewellyn ©

The installer should find the path
to your Java jre. If you have

more than one, be sure it is set

to the one you want to use.

CNT 4714: Servlets – Part 1 Page 30 Dr. Mark Llewellyn ©

CNT 4714: Servlets – Part 1 Page 31 Dr. Mark Llewellyn ©

CNT 4714: Servlets – Part 1 Page 32 Dr. Mark Llewellyn ©

CNT 4714: Servlets – Part 1 Page 33 Dr. Mark Llewellyn ©

Setting Up Tomcat

• Once you’ve downloaded and installed Tomcat you’re ready

to run a demonstration test that will tell you if you’ve got

everything set-up properly.

NOTE: During the install, Tomcat will ask you which TCP

port Tomcat should run on (See page 28). To avoid any

conflict with standard Web servers which default to TCP port

80, Tomcat is set to default to TCP port 8080. If you have any

other service running on this port change the port number at

this time to one on which no conflict will occur.

In all subsequent examples, I’m running Tomcat on TCP port

8080.

CNT 4714: Servlets – Part 1 Page 34 Dr. Mark Llewellyn ©

Starting Up Tomcat

• Once Tomcat is installed, you need to start it as a service.

On Windows machines, the current versions of Tomcat are

installed as a service that will start when Windows starts. On

Unix/Linux a startup.sh file is included so you just type

startup (assuming you are in the bin directory where you

located Tomcat).

1. Start Tomcat running.

2. Start your Web browser.

3. Enter URL: http://localhost:8080

4. You should see the screen on the following page if

everything is set up ok.

http://localhost:8080/

CNT 4714: Servlets – Part 1 Page 35 Dr. Mark Llewellyn ©

Tomcat default homepage

Click the Server Status link and you’ll

see the screen on the next page.

CNT 4714: Servlets – Part 1 Page 36 Dr. Mark Llewellyn ©

If you set up an administrator login when

you click on the these items this window

will pop-up to enter your administrator

credentials.

CNT 4714: Servlets – Part 1 Page 37 Dr. Mark Llewellyn ©

Tomcat server status information page.

Note server version is displayed here.

CNT 4714: Servlets – Part 1 Page 38 Dr. Mark Llewellyn ©

Tomcat Web App Manager will be a very

useful tool for you when deploying and

developing servlets. Get to know it now.

CNT 4714: Servlets – Part 1 Page 39 Dr. Mark Llewellyn ©

When the underlying code for a servlet is

modified, you need to reload the servlet on

the server in order for the clients to see the

changes.

CAUTION! Undeploy removes all servlet files

from the server!

CNT 4714: Servlets – Part 1 Page 40 Dr. Mark Llewellyn ©

We won’t be using the Tomcat Virtual Host

Manager tool. This is a Tomcat tool that is

useful when Tomcat is hosting several virtual

servers.

CNT 4714: Servlets – Part 1 Page 41 Dr. Mark Llewellyn ©

More Tomcat Details
• If your system does not recognize “localhost”, enter

http://127.0.0.1:8080 instead of http://localhost:8080.
Address 127.0.0.1 basically means “this machine” which is
the same as localhost.

• From the Tomcat homepage you can also act as the server
administrator and manager. You will need to do things on
the administrator side (you must have set the host manager
application during the installation process, (see page 27)), it
is interesting to go into the manager side of things and look
at the server from the server’s point of view. It may also be
necessary to reload applications occasionally (more on this
later), which can be done from the manager application. See
page 38 for an example.

• Checking the status of the server can also be accomplished
from the Tomcat homepage. See page 38 for a sample.

http://127.0.0.1:8080/
http://localhost:8080/

CNT 4714: Servlets – Part 1 Page 42 Dr. Mark Llewellyn ©

CNT 4714: Servlets – Part 1 Page 43 Dr. Mark Llewellyn ©

CNT 4714: Servlets – Part 1 Page 44 Dr. Mark Llewellyn ©

A Tour of Tomcat
• Before we look into creating our own servlets, we need to look more

closely at Tomcat. This will help you better understand how web

applications are developed and deployed.

• The directory structure within Tomcat looks like the one shown on

the next page. It contains, among other things, seven directories

named, bin, conf, lib, logs, temp, webapps, and

work.

bin

• Directory bin contains scripts for starting and stopping Tomcat as

well as some additional tools.

conf

• Directory conf contains files used to configure Tomcat at the global

level, although it is possible for each web application to override
many of the values provided in this directory.

CNT 4714: Servlets – Part 1 Page 45 Dr. Mark Llewellyn ©

Tomcat Directory Structure

CNT 4714: Servlets – Part 1 Page 46 Dr. Mark Llewellyn ©

A Tour of Tomcat (cont.)

• The most important file inside the conf directory is server.xml,

which tells Tomcat the set of services to run when it starts up as well

as what port to listen to. This file also specifies the set of resources to

make available to applications and a number of security parameters.

A portion of this file (the part illustrating the non-SSL HTTP port) is

shown on page 47.

• There is also a web.xml file in this directory, which establishes

default values that may be overridden by values in each applications

web.xml file. A portion of this file is shown on page 48.

• The file jk2.properties defines a set of properties that are used

when Tomcat is installed as an application server in conjunction with

an external web server such as Apache or IIS. In these notes we will

assume that Tomcat is running in stand-alone mode, where it operates

as both a web server and application server.

CNT 4714: Servlets – Part 1 Page 47 Dr. Mark Llewellyn ©

A portion of the server.xml

file illustrating the

connection port for

Tomcat.

CNT 4714: Servlets – Part 1 Page 48 Dr. Mark Llewellyn ©

A portion of the web.xml file

contained in the Tomcat conf

directory.

Default set of welcome

files to be used by

Tomcat. We’ll create

one of these files later.

CNT 4714: Servlets – Part 1 Page 49 Dr. Mark Llewellyn ©

A Tour of Tomcat (cont.)

logs

• The logs directory contains a n umber of log files created by Tomcat.

The file catalina.out contains anything written to

System.out and System.err, as well as information relevant to

the server as a whole.

lib

• In previous versions of Tomcat, this directory was named common

and contained three subdirectories – classes, lib, and endorsed –

which contain code used by Tomcat. The newer versions of Tomcat,

beginning with version 6.0.29, have condensed these into a single

directory named lib. Any custom .jar files that may be needed

throughout Tomcat, such as a JDBC driver, are placed in this

directory.

CNT 4714: Servlets – Part 1 Page 50 Dr. Mark Llewellyn ©

A Tour of Tomcat (cont.)

webapps

• This directory contains all the web applications Tomcat is configured

to run, one web application per subdirectory. We will be placing the

web applications that we develop into subdirectories in this directory.

We’ll look in more detail at the structure of these subdirectories a bit

later.

work

• This directory is used by Tomcat to hold servlets that are built from

JSP pages. Users will typically not need anything in this directory.

temp

• This directory is used internally by Tomcat and can be ignored.

CNT 4714: Servlets – Part 1 Page 51 Dr. Mark Llewellyn ©

Servlet Interface
• The servlet packages define two abstract classes that implement

interface Servlet – class GenericServlet (from the

package javax.servlet) and class HttpServlet (from the

package javax.servlet.http).

• These classes provide default implementations of some Servlet

methods.

• Most servlets extend either GenericServlet or

HttpServlet and override some or all of their methods.

• The GenericServlet is a protocol-independent servlet, while

the HttpServlet uses the HTTP protocol to exchange

information between the client and server.

• We’re going to focus exclusively on the HttpServlet used on

the Web.

CNT 4714: Servlets – Part 1 Page 52 Dr. Mark Llewellyn ©

Servlet Interface (cont.)

• HttpServlet defines enhanced processing capabilities

for services that extend a Web server’s functionality.

• The key method in every servlet is service, which accepts

both a ServletRequest object and a

ServletResponse object. These object provide access to

input and output streams that allow the servlet to read data

from and send data to the client.

• If a problem occurs during the execution of a servlet, either

ServletExceptions or IOExceptions are thrown to

indicate the problem.

CNT 4714: Servlets – Part 1 Page 53 Dr. Mark Llewellyn ©

HTTPServlet Class
• Servlets typically extend class HttpServlet, which

overrides method service to distinguish between the various

requests received from a client web browser.

• The two most common HTTP request types (also known as
request methods) are get and post. (See also Servlets – Part

1 notes.)

– A get request retrieves information from a server. Typically, an

HTML document or image.

– A post request sends data to a server. Typically, post requests are

used to pass user input to a data-handling process, store or update

data on a server, or post a message to a news group or discussion

forum.

• Class HttpServlet defines methods doGet and doPost

to respond to get and post requests from a client.

CNT 4714: Servlets – Part 1 Page 54 Dr. Mark Llewellyn ©

HTTPServlet Class (cont.)

• Methods doGet and doPost are invoked by method

service, which is invoked by the servlet container when a

request arrives at the server.

• Method service first determines the request type, the invokes

the appropriate method for handling such a request.

• In addition to methods doGet and doPost, the following

methods are defined in class HttpServlet:

– doDelete (typically deletes a file from the server)

– doHead (client wants only response headers no entire body)

– doOptions (returns HTTP options supported by server)

– doPut (typically stores a file on the server)

– doTrace (for debugging purposes)

CNT 4714: Servlets – Part 1 Page 55 Dr. Mark Llewellyn ©

HTTPServletRequest Interface
• Every invocation of doGet or doPost for an

HttpServlet receives an object that implements

interface HttpServletRequest.

• The servlet container creates an HttpServletRequest

object and passes it to the servlet’s service method, which

in turn, passes it to doGet or doPost.

• This object contains the clients’ request and provides

methods that enable the servlet to process the request.

• The full list of HttpServletRequest methods is available at:

www.java.sun.com/j2ee/1.4/docs/api/index.html, however, a

few of the more common ones are shown on page 18. (Note:

you can also get to them from Tomcat, see next page.)

http://www.java.sun.com/j2ee/1.4/docs/api/index.html

CNT 4714: Servlets – Part 1 Page 56 Dr. Mark Llewellyn ©

This link will take you to the servlet

specification pages.

CNT 4714: Servlets – Part 1 Page 57 Dr. Mark Llewellyn ©

HTTPServletRequest Methods
• Cookie[] getCookies() – returns an array of Cookie

objects stored on the client by the server. Cookies are used

to uniquely identify clients to the server.

• String getLocalName() – gets the host name on

which the request was received.

• String getLocalAddr() – gets the IP address on

which the request was received.

• int getLocalPort() – gets the IP port number on

which the request was received.

• String getParameter(String name) – gets the

value of a parameter set to the servlet as part of a get or

post request.

CNT 4714: Servlets – Part 1 Page 58 Dr. Mark Llewellyn ©

HTTPServletResponse Interface
• Every invocation of doGet or doPost for an

HttpServlet receives an object that implements

interface HttpServletResponse.

• The servlet container creates an HttpServletResponse

object and passes it to the servlet’s service method, which

in turn, passes it to doGet or doPost.

• This object provides methods that enable the servlet to

formulate the response to the client.

• The full list of HttpServletRequest methods is available at:

www.java.sun.com/j2ee/1.4/docs/api/index.html, however, a

few of the more common ones are shown on the next page.

(Also accessible from Tomcat.)

http://www.java.sun.com/j2ee/1.4/docs/api/index.html

CNT 4714: Servlets – Part 1 Page 59 Dr. Mark Llewellyn ©

HTTPServletResponse Methods
• void addCookie (Cookie cookie) – adds a Cookie to

the header of the response to the client.

• ServletOutputStream getOutputStream() – gets a

byte-based output stream for sending binary data to the client.

• PrintWriter getWriter() – gets a character-based

output stream for sending text data (typically HTML formatted

text) to the client.

• void SetContentType (String type) – specifies the

content type of the response to the browser to assist in

displaying the data.

• void getContentType() – gets the content type of the

response.

CNT 4714: Servlets – Part 1 Page 60 Dr. Mark Llewellyn ©

Handling HTTP get Requests
• The primary purpose of an HTTP get request is to

retrieve the contents of a specified URL, which is typically
an HTML document.

• Before we look at a complete implementation of a servlet
execution, let’s examine the Java code that is required for
a basic servlet.

• Shown on the next page is a servlet that responds to an
HTTP get request. This is a simple welcome servlet and
is about as simple a servlet as is possible.

• Note: Tomcat will look for an index.html, or
welcome.html files to run as a default “home page”.
At this point we haven’t set one up so the initial screen for
our web application will not be too pretty.

CNT 4714: Servlets – Part 1 Page 61 Dr. Mark Llewellyn ©

HTML document

returned to the client

Set MIME content type

doGet handles the HTTP get

request – override method

End the HTML document

generated by the servlet.

Class name WelcomeServlet

CNT 4714: Servlets – Part 1 Page 62 Dr. Mark Llewellyn ©

Handling HTTP get Requests (cont.)

• The servlet creates an HTML document containing the

text “Hello! Welcome to the Exciting World of Servlet

Technology!”

• This text is the response to the client and is sent through the
PrintWriter object obtained from the

HttpServletRepsonse object.

• The response object’s setContentType method is used to

specify the type of data to be sent as the response to the client.

In this case it is defined as text/html, we’ll look at other types

later. In this case the browser knows that it must read the

XHTML tags and format the document accordingly.

• The content type is also known as the MIME (Multipurpose

Internet Mail Extension) type of the data.

CNT 4714: Servlets – Part 1 Page 63 Dr. Mark Llewellyn ©

Creating a Web Application
• One of the fundamental ideas behind Tomcat is that of a web

application.

• A web application is a collection of pages, code, and

configurations that is treated as a unit.

• Normally a web application will map to a particular URL, so

URLs such as http://somesite.com/app1 and

http://somesite.com/app2 will invoke different web applications
called app1 and app2 respectively.

• Tomcat can contain an arbitrary number of web applications

simultaneously.

• While web applications can be extremely complex, we’ll start

out with a minimal web application and build from there.

http://somesite.com/app1
http://somesite.com/app2

CNT 4714: Servlets – Part 1 Page 64 Dr. Mark Llewellyn ©

Creating a Web Application (cont.)

• The most basic web application in Tomcat will require the
creation of a directory inside the webapps directory to hold

the web application. For this first example, we’ll create a
subdirectory called first-example.

Create this directory inside the
webapps directory of Tomcat.

CNT 4714: Servlets – Part 1 Page 65 Dr. Mark Llewellyn ©

Creating a Web Application (cont.)

• Within the first-example directory we need to create a

directory that will hold the configuration and all of the

resources for the web application. This directory must be called
WEB-INF.

• The most important and only required element in WEB-INF is

the file web.xml. The web.xml file controls everything

specific to the current web application. We’ll look at this file in

more detail later as we add to it, but for now we’ll look only at

the components of this file that are essential for a very simple

web application.

• The next page illustrates our initial web.xml file.

CNT 4714: Servlets – Part 1 Page 66 Dr. Mark Llewellyn ©

Notepad++ View

The web-app tag

Optional display-name tag.

Used by administrator tools.

Optional description for reading the

xml file.

Servlet declaration. Specifies the name of the

servlet, the implementing class file, and any

initialization parameters.

Servlet mapping associates a servlet name with a

class of URLs. One servlet may be configured to

handle multiple sets of URLs, however, only one

servlet can handle any given URL.

CNT 4714: Servlets – Part 1 Page 67 Dr. Mark Llewellyn ©

Office XML Handler (IE10) Editor View

CNT 4714: Servlets – Part 1 Page 68 Dr. Mark Llewellyn ©

Creating a Web Application (cont.)

• With these directories and files in place, Tomcat will be able to

respond to a request for the page from a client at

http://localhost:8080/first-example/WelcomeServlet.html.

• Other HTML and JSP pages can be added at will, along with

images, MP3 files, and just about anything else.

• Although what we have just seen is all that is required to create

a minimal web application, much more is possible with a

knowledge of how web applications are arranged and we will

see this as we progress through this technology.

• The next few slides illustrate the execution of our simple web

application (a welcome servlet).

http://localhost:8080/first-examples/WelcomeServlet.html

CNT 4714: Servlets – Part 1 Page 69 Dr. Mark Llewellyn ©

The Tomcat Web Application

Manager recognizes the new

webapp.

CNT 4714: Servlets – Part 1 Page 70 Dr. Mark Llewellyn ©

Tomcat/Java Configuration - The Servlet API

IMPORTANT ! !

• Your Tomcat installation includes the servlet-api.jar

file. This file can be found in the lib folder in Tomcat.

Copy this file into your jdk/jre/lib/ext folder to

allow the java compiler access to the javax.servlet

package.

• Note that your Java set-up may already have this installed

depending on several things, so check your

jdk/jre/lib/ext folder first.

CNT 4714: Servlets – Part 1 Page 71 Dr. Mark Llewellyn ©

Tomcat/Java Configuration - The Servlet API

This is the .jar file that you

need to copy into your
jre/lib/ext folder.

CNT 4714: Servlets – Part 1 Page 72 Dr. Mark Llewellyn ©

Tomcat/Java Configuration - The Servlet API

You need this .jar file here

to allow your Java

environment to interface to

the servlet container

provided by Tomcat.

You should already have

this file here when you set-

up MySQL and Java.

CNT 4714: Servlets – Part 1 Page 73 Dr. Mark Llewellyn ©

This is the HTML5 file

that generates the output

shown above which

informs the client how to

invoke the servlet.

CNT 4714: Servlets – Part 1 Page 74 Dr. Mark Llewellyn ©

Client invokes the WelcomeServlet page from the web application named first-

examples. The URL is:
http://localhost:8080/first-example/WelcomeServlet.html

CNT 4714: Servlets – Part 1 Page 75 Dr. Mark Llewellyn ©

Execution of the WelcomeServlet servlet

Page 31

CNT 4714: Servlets – Part 1 Page 76 Dr. Mark Llewellyn ©

An XHTML Document
• The HTML5 document shown on page 73 provides a form that

invokes the servlet defined on page 61.

• The form’s action attribute (/first-example/welcome1)

specifies the URL path that invokes the servlet.

• The form’s method attribute indicates that the browser sends a

get request to the server, which results in a call to the servlet’s
doGet method.

– We’ll look at how to set-up the URL’s and deployment structure

in the next set of notes.

CNT 4714: Servlets – Part 1 Page 77 Dr. Mark Llewellyn ©

Set-Up For First Web Application
• The exact set-up you need to use for setting up your web

application in Tomcat is summarized on the next couple of
pages.

1. In the Tomcat webapps folder create a directory named
first-example.

2. In the top level of first-example copy the
WelcomeServlet.html file from the course code page.

3. In the top level of first-example create a directory
named WEB-INF.

4. When steps 2 and 3 are complete the top level of first-
examples should look like the picture at the top of the next
page.

CNT 4714: Servlets – Part 1 Page 78 Dr. Mark Llewellyn ©

Set-Up For First Web Application (cont.)

5. Copy the web.xml configuration file from the course code
page into the WEB-INF directory.

6. At the top level of the WEB-INF directory create a directory
named classes.

7. When steps 5 and 6 are complete, the WEB-INF directory
should look like the picture on the top of the next page.

Top level of first-example.

CNT 4714: Servlets – Part 1 Page 79 Dr. Mark Llewellyn ©

Set-Up For First Web Application (cont.)

8. Copy the WelcomeServlet.java file from the course code page into

the classes directory and compile it to produce the

WelcomeServlet.class file which should also reside in the classes

directory. (The .java file does not need to reside in this directory for a

servlet, but it is handy to keep the source in the same place.)

Top level of WEB-INF.

CNT 4714: Servlets – Part 1 Page 80 Dr. Mark Llewellyn ©

Set-Up For First Web Application (cont.)

9. Once the classes directory looks like the one shown

above. You are ready to invoke the servlet from a web

browser. Start Tomcat and enter the URL

http://localhost:8080/first-example/WelcomeServlet.html.

Tomcat and the servlet will do the rest. If all goes well you

should see the output that was shown on pages 74-75.

The classes directory

http://localhost:8080/first-example/WelcomeServletHTML5.html

